## Margin Call: Fermi Problems, Highway Horrors, Black Swans, and Why You Should Worry About When You Should Worry

“Reports that say that something hasn’t happened are always interesting to me, because as we know, there are known knowns; there are things we know that we know. There are known unknowns; that is to say, there are things that we now know we don’t know. But there are also unknown unknowns — there are things we do not know we don’t know.” — Donald Rumsfeld, February 2002

Today’s topic is engineering margin.

XKCD had a what-if column involving Fermi...

## Ten Little Algorithms, Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 6: Green’s Theorem and Swept-Area Detection

Today we will be drifting back into the topic of numerical methods, and look at an algorithm that takes in a series of discretely-sampled data points, and estimates the maximum value of...

## The Dilemma of Unwritten Requirements

You will probably hear the word “requirements” at least 793 times in your engineering career, mostly in the context of how important it is, in any project, to agree upon clear requirements before committing to (and hastily proceeding towards) a deadline. Some of those times you may actually follow that advice. Other times it’s just talk, like how you should “wear sunscreen when spending time outdoors” and “eat a diet low in saturated fats and...

## Trust, but Verify: Examining the Output of an Embedded Compiler

I work with motor control firmware on the Microchip dsPIC33 series of microcontrollers. The vast majority of that firmware is written in C, with only a few percent in assembly. And I got to thinking recently: I programmed in C and C++ on an Intel PC from roughly 1991 to 2009. But I don’t remember ever working with x86 assembly code. Not once. Not even reading it. Which seems odd. I do that all the time with embedded firmware. And I think you should too. Before I say why, here are...

## How to Read a Power MOSFET Datasheet

One of my pet peeves is when my fellow engineers misinterpret component datasheets. This happened a few times recently in separate instances, all involving power MOSFETs. So it’s time for me to get on my soapbox. Listen up!

I was going to post an article on how to read component datasheets in general. But MOSFETs are a good place to start, and are a little more specific. I’m not the first person to write something about how to read datasheets; here are some other good...

## Lessons Learned from Embedded Code Reviews (Including Some Surprises)

My software team recently finished a round of code reviews for some of our motor controller code. I learned a lot from the experience, most notably why you would want to have code reviews in the first place.

My background is originally from the medical device industry. In the United States, software in medical devices gets a lot of scrutiny from the Food and Drug Administration, and for good reason; it’s a place for complexity to hide latent bugs. (Can you say “

## Ten Little Algorithms, Part 4: Topological Sort

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection

Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...

## Oh Robot My Robot

Oh Robot! My Robot! You’ve broken off your nose! Your head is spinning round and round, your eye no longer glows, Each program after program tapped your golden memory, You used to have 12K, now there is none that I can see, Under smoldering antennae, Over long forgotten feet, My sister used your last part: The chip she tried to eat.

Oh Robot, My Robot, the remote controls—they call, The call—for...

## Important Programming Concepts (Even on Embedded Systems) Part VI : Abstraction

Earlier articles:

- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part V: State Machines

We have come to the last part of the Important Programming Concepts series, on abstraction. I thought I might also talk about why there isn’t a Part VII, but decided it would distract from this article — so if you want to know the reason, along with what’s next,

## Ten Little Algorithms, Part 3: Welford's Method (and Friends)

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection

Last time we talked about a low-pass filter, and we saw that a one-line...

## Important Programming Concepts (Even on Embedded Systems) Part IV: Singletons

Other articles in this series:

- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part V: State Machines
- Part VI: Abstraction

Today’s topic is the singleton. This article is unique (pun intended) in that unlike the others in this series, I tried to figure out a word to use that would be a positive concept to encourage, as an alternative to singletons, but

## Tolerance Analysis

Today we’re going to talk about tolerance analysis. This is a topic that I have danced around in several previous articles, but never really touched upon in its own right. The closest I’ve come is Margin Call, where I discussed several different techniques of determining design margin, and ran through some calculations to justify that it was safe to allow a certain amount of current through an IRFP260N MOSFET.

Tolerance analysis...

## Linear Feedback Shift Registers for the Uninitiated, Part XVII: Reverse-Engineering the CRC

Last time, we continued a discussion about error detection and correction by covering Reed-Solomon encoding. I was going to move on to another topic, but then there was this post on Reddit asking how to determine unknown CRC parameters:

I am seeking to reverse engineer an 8-bit CRC. I don’t know the generator code that’s used, but can lay my hands on any number of output sequences given an input sequence.

This is something I call the “unknown oracle”...

## Which MOSFET topology?

A recent electronics.StackExchange question brings up a good topic for discussion. Let's say you have a power supply and a 2-wire load you want to be able to switch on and off from the power supply using a MOSFET. How do you choose which circuit topology to choose? You basically have four options, shown below:

From left to right, these are:

High-side switch, N-channel MOSFET High-side switch, P-channel MOSFET Low-side switch, N-channel...## First-Order Systems: The Happy Family

Все счастли́вые се́мьи похо́жи друг на дру́га, ка́ждая несчастли́вая семья́ несчастли́ва по-сво́ему.— Лев Николаевич Толстой, Анна Каренина

Happy families are all alike; every unhappy family is unhappy in its own way.— Lev Nicholaevich Tolstoy, Anna Karenina

I was going to write an article about second-order systems, but then realized that it would be...

## Ten Little Algorithms, Part 6: Green’s Theorem and Swept-Area Detection

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method

This article is mainly an excuse to scribble down some cryptic-looking mathematics — Don’t panic! Close your eyes and scroll down if you feel nauseous — and...

## Linear Feedback Shift Registers for the Uninitiated, Part XI: Pseudorandom Number Generation

Last time we looked at the use of LFSRs in counters and position encoders.

This time we’re going to look at pseudorandom number generation, and why you may — or may not — want to use LFSRs for this purpose.

But first — an aside:

Science Fair 1983When I was in fourth grade, my father bought a Timex/Sinclair 1000. This was one of several personal computers introduced in 1982, along with the Commodore 64. The...

## Byte and Switch (Part 2)

In part 1 we talked about the use of a MOSFET for a power switch. Here's a different circuit that also uses a MOSFET, this time as a switch for signals:

We have a thermistor Rth that is located somewhere in an assembly, that connects to a circuit board. This acts as a variable resistor that changes with temperature. If we use it in a voltage divider, the midpoint of the voltage divider has a voltage that depends on temperature. Resistors R3 and R4 form our reference resistance; when...

## Linear Feedback Shift Registers for the Uninitiated, Part V: Difficult Discrete Logarithms and Pollard's Kangaroo Method

Last time we talked about discrete logarithms which are easy when the group in question has an order which is a smooth number, namely the product of small prime factors. Just as a reminder, the goal here is to find \( k \) if you are given some finite multiplicative group (or a finite field, since it has a multiplicative group) with elements \( y \) and \( g \), and you know you can express \( y = g^k \) for some unknown integer \( k \). The value \( k \) is the discrete logarithm of \( y \)...

## The Least Interesting Circuit in the World

It does nothing, most of the time.

It cannot compute pi. It won’t oscillate. It doesn’t light up.

Often it makes other circuits stop working.

It is… the least interesting circuit in the world.

What is it?

About 25 years ago, I took a digital computer architecture course, and we were each given use of an ugly briefcase containing a bunch of solderless breadboards and a power supply and switches and LEDs — and a bunch of

## Signal Processing Contest in Python (PREVIEW): The Worst Encoder in the World

When I posted an article on estimating velocity from a position encoder, I got a number of responses. A few of them were of the form "Well, it's an interesting article, but at slow speeds why can't you just take the time between the encoder edges, and then...." My point was that there are lots of people out there which take this approach, and don't take into account that the time between encoder edges varies due to manufacturing errors in the encoder. For some reason this is a hard concept...

## Padé Delay is Okay Today

This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.

Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a \( p=126, q=130 \) Padé approximation of a time delay:

Impressed? Maybe you should be. This...

## Ten Little Algorithms, Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 6: Green’s Theorem and Swept-Area Detection

Today we will be drifting back into the topic of numerical methods, and look at an algorithm that takes in a series of discretely-sampled data points, and estimates the maximum value of...

## 10 More (Obscure) Circuit Components You Should Know

The interest in my previous article on obscure but useful electronics parts, "10 Circuit Components You Should Know" was encouraging enough that I thought I would write a followup. So here are another 10:

1. "Ideal Diode" controllers

Load-sharing circuits use diodes tied together at their cathode terminal to take the most positive voltage among the sources and connect it to a load. Works great: you have a DC/DC power supply, a battery, and a solar cell, and it will use whichever output is...

## Real-time clocks: Does anybody really know what time it is?

We recently started writing software to make use of a real-time clock IC, and found to our chagrin that the chip was missing a rather useful function, namely elapsed time in seconds since the standard epoch (January 1, 1970, midnight UTC).Let me back up a second.A real-time clock/calendar (RTC) is a micropower chip that has an oscillator on it that keeps counting time, independent of main system power. Usually this is done with a lithium battery that can power the RTC for years, so that even...

## Bad Hash Functions and Other Stories: Trapped in a Cage of Irresponsibility and Garden Rakes

I was recently using the publish() function in MATLAB to develop some documentation, and I ran into a problem caused by a bad hash function.

In a resource-limited embedded system, you aren't likely to run into hash functions. They have three major applications: cryptography, data integrity, and data structures. In all these cases, hash functions are used to take some type of data, and deterministically boil it down to a fixed-size "fingerprint" or "hash" of the original data, such that...

## Important Programming Concepts (Even on Embedded Systems) Part III: Volatility

1vol·a·tile adjective \ˈvä-lə-təl, especially British -ˌtī(-ə)l\ : likely to change in a very sudden or extreme way : having or showing extreme or sudden changes of emotion : likely to become dangerous or out of control

— Merriam-Webster Online Dictionary

Other articles in this series:

## Donald Knuth Is the Root of All Premature Optimization

This article is about something profound that a brilliant young professor at Stanford wrote nearly 45 years ago, and now we’re all stuck with it.

TL;DRThe idea, basically, is that even though optimization of computer software to execute faster is a noble goal, with tangible benefits, this costs time and effort up front, and therefore the decision to do so should not be made on whims and intuition, but instead should be made after some kind of analysis to show that it has net...

## Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction

Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.

This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...

## 10 Items of Test Equipment You Should Know

When life gets rough and a circuit board is letting you down, it’s time to turn to test equipment. The obvious ones are multimeters and oscilloscopes and power supplies. But you know about those already, right?

Here are some you may not have heard of:

Non-contact current sensors. Oscilloscope probes measure voltage. When you need to measure current, you need a different approach. Especially at high voltages, where maintaining galvanic isolation is important for safety. The usual...